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The magnetic phase diagram of the p-d model 

SMMEvans 
Department of Mathematics, Imperial Collegs 180 Qucen's Gate, London SW7 2B2, 
UK 

REeeivsd 13 Nwanbcr 1991 

AbslmcL In this paper we attempt to calculate the magnetic phase diagram for the 
p-d model using the Gutmiller approximation (GA). This is equivalent to the mean-field 
approximation in the Kotliar-Ruckmslcin slave-boson formulation. We find that we do 
not obtain the apccted behaviour in the region where the number of carriers, n, is 
< 1 and the ratio of the hybridbation, V, to the p d  energy dit[erence. c. goes to 
zem. In thir limit the pd model maps onto the Hubbard model and we would expect 
lo End the same results as when we perform the GA on this Hamiltonian. This is not 
the case and we discuss the RaSOn for this. The region n > 1 is also investigated and 
similar problems arise. Ways of impmviog the solution arc proposed for a modi6ed 
Hamiltonian. 

1. Introduction 

The Cu-0 planes in the high-temperature superconductors are thought to be de- 
scribed by a model close to the periodic Anderson model [Id]. In the appropriate 
parameter regime this model is referred to either as the 'p-d model', which is how 
we shall refer to it here, or as the 'extended Hubbard model'. For a certain region of 
parameters this maps onto the Hubbard model 17, 81. Much interest has, therefore, 
been generated in the phase diagrams of both the Hubbard and p-d models. 

The Hubbard model can be reformulated using the slaveboson (SB) approach 
introduced by Kotliar and Ruckenstein (KR) [9, 101 which in the mean-field (MF) 
limit is equivalent to the Gutnviller approximation (GA) [ll]. This gives us a means 
of calculating an approximate magnetic phase diagram. A small ferromagnetic region 
is found for n, the number of carriers, close to one and V / t ,  the ratio of the on-site 
Coulomb repulsion to the band width, large. This region is in reasonable agreement 
with the essentially exact results of Von der Linden and Edwards [U] for a ZD 
square lattice. The paramagnetioantiferroromagnetic boundary can also be calculated 
19, lo]. The method, however, only includes magnetic interactions arising from spin- 
dependent band renonqalization and does not include the intersite antiferromagnetic 
exchange terms. These need to be included to give a full description. An insulating 
phase is found for n = 1 and U / t  greater than some critical value. 
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In this paper we are interesfed in applying the KR formulation to the p-d model. 
The Coulomb repulsion, U, on the d sites is large and it is convenient to consider 
the strong-couplmg limit with U -+ m. This limit has previously been considered by 
several groups using a different variety of SBS [3-6] originally introduced by Coleman 
and used extensively in the theory of heavy-fermion systems 1131. In both SB theories 
the auxiliary bosons prevent double occupancy and the MF solutions describe a band- 
narrowing effect due to the strong interaction. The KR method has the advantage 
of incorporating magnetic interactions at the MF level and we use this method to 
calculate the magnetic phase diagram. Again the antiferromagnetic superexchange 
terms are not included at this level. For the p-d model there is an insulating phase 
for n = 1 and V/E below a critical value. This is analogous to the insulating 
transition found in the Hubbard model, 

We start by considering the region where the number of holes, n, is less than one, 
which corresponds to the electrondoped systems. It is known that for V / E  + 0 the 
model maps onto the Hubbard model [7l. We therefore expect that the critical value 
of n below which the ferromagnetism disappears will be the same for the p-d model 
with V/C + 0 as for the Hubbard model. This is found not to be the case. We see 
that performing the Gutnviller approximation for the p-d model, then expanding in 
V / E ,  does not produce the same results as expanding in V / E ,  then using the GA. The 
problem can be seen to arise in the former approach through renormaliking those 
terms O ( V * / E )  that shift the on-site energy by the same factor as those that produce 
the %tersite term. It appears that the GA gives spurious results when used for the 
p-d model and has to be modified. 

In section 2 2  we propose a simple modiliation to the quasiparticle bands which 
gives the correct limiting behaviour as V / E  + 0. We recalculate the magnetic phase 
diagram and far smaller magnetic regions are found. The superexchange terms are 
discussed and included in a simple way. 

Iq section 3 we consider what happens for n > 1. We note that in this region the 
original SB solution [3-6] is non-perturbative in V / E  in the sense that taking the limit 
V I E  + 0 does not reproduce the bare p and d energy levels. The physical picture 
is then necessarily different to the perturbation expansion described by Zhang and 
Rice [SI. For the SB MF solution we have nd < 1, where nd is the average d valence, 
and the only dispersion is via unoccupied d sites. The band-narrowing factor is given 
by 1 - nd and tends to 0 for V / E  + 0. In the Zhang-Rice picture, on the other 
hand, nd = 1 but propagation can still take place via the formation and destruction 
of singlets. Here the band-narrowing factor is given by n - 1. It is, therefore, no 
longer surprising that the GA in the limit V / E  + 0 does not reproduce the results of 
the GA to the Hubbard model. 

We would like to End a solution that explicitly reduces to the perturbation limit 
as in section 22 There appears to be no simple modification to the quasiparticle 
bands that does this. We can, however, proceed by considering a slightly different 
model where we include both on-site and intersite hybridization terms, V, and VI 
respectively. For certain parameters this is equivalent to our original model with the p 
states expanded in Wannier functions [8]. We then take proper account of the on-site 
terms and expand in V, [14]. The limit VI/€ -+ 0 gives us an effective Hubbard 
model for both n < 1 and n > 1. We now include excitations to the first excited 
state and calculate the magnetic phase diagram. This is found to be approximately 
symmetric about n = 1. 
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2. The Gutmiller approximation for the p-d model with n < 1 
2.1. First appmximatwn 

The p 4  model is written as 

where diu and p j o  are the annihilation operators for d and p hole states respectively 
and = df,dio. V. $3 = ( - l )M"V with M . .  'J = 2 if j = i -  $2 or 3 = E - ~ i y  

and M . .  = 1 otherwise. The lattice structure-in the planes is shown in [8]. We 
have d e n  the lattice constant to be 1. In the limit U -+ 03 we can write an 
effective Hamiltonian using the MF approximation to the KR SB formulation [9, 101 
or, equivalently, the Gutmiller approximation [IS] giving 

. . 1 -  

- pnd + sm + constant (2.2) 

where ed, = ed - os and ed is now an effective d level energy, = edo i- p. 
Po = q,V where q, is the ratio of the hopping probability for U + 03 to that 
at U = 0 given by qo = [(I - nd)/(l - nd,)]1/2 with nd,= average number of 
d holes with spin U per site and nd = E, ndo. m is the average magnetization 
and s acts somewhat like an internal magnetic field. In the SB theory, s and p are 
connected with enforcing constraints on the d-site occupations. The constant term 
contains boson terms. We can calculate the free energy for the ferromagnetic or 
paramagnetic state, 

F = -0-l C t n [ l +  e x p ( - ~ ~ , , ( k ) ) ]  - pnd -I- sm + constant (2.3) 
o = i , u  k 

where 

(24) 1 E*, = 0.5 ep i- edo k d(ep  - + 16V2(1 - z )  1 
with x = 0.5[cos(ke,) + cos(k,)]. There are also local levels at eda. but we shall 
ignore these from now on. Four self-consistent equations are then found by mini- 
mizing F with respect to nd, p ,  s and m. We see that the factor q, describes a 
band-narrowing effect which is different for different spin directions when there is a 
finite magnetization. In the Coleman SB approach 136,131 the band narrowing is the 
same for both spin directions whatever the magnetization and a ferromagnetic state 
is not naturally described. The parameter s gives the splitting between the down- 
and up-spin bands in the ferromagnetic case. The susceptibility can be calculated by 
coupling an external magnetic field to the d sites then calculating dm/dh taking into 
a m u n t  the implicit dependence of the MF variables on h. Ferromagnetic instabilities 
are signalled by the vanishing of the inverse susceptibility. The results are shown in 
figure 1 where we have used an elliptical density of states, as in [9] and [lo]. We 
find a large ferromagnetic region with the critical value of V / E  only falling to 0 
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for n close to 0. We know, however, that as VIE .-) 0 the p-d model maps onto 
the Hubbard model [A. In the Hubbard model with U - 03 there exists a Critical 
value of n IJ 0.7 below which the model is not ferromagnetic [12]. This behaviour is 
reproduced by the GA to the Hubbard model giving rzc - 0.6 [9, lo]. The numerical 
values cannot, however, be compared directly, firstly because the results in 1121 are 
calculated using tight-binding bands for a w) square lattice while an elliptical density 
of states is used in [9] and [lo], and semndly hecause in [E] it is the instability from 
a saturated magnetic state that is calculated while the GA calculates instabilities to a 
weak ferromagnetic state. We. see that the GA for the p d  model in the h i t  V / c  
goes to zero does not reproduce the results of expanding in V / c  and then using the 
GA on the resulting Hamiltonian. If we examine our expre-ssiom as VIE .+ 0 we see 
that the discrepancy arises due to the fact that when we expand our Hamiltonian ex- 
actly in V / E  then to O( v / c )  there are two terms: the bare d-level energy is shifted 
hy an amount - V 2 / ~  and there are intersite terms again - V2/e. When we now 
perform the GA the intersite terms are renormalized but the on-site t e m  are not. 
Applying the GA directly to the p-d model, both there terms are renormalized. Since 
the renormalization factor depends on a, the effective on-site energy term acquires 
a dependence on m and it is this that leads to the discrepancy between the two 
approaches. Physically it is clear that there on-site terms should not be renormalined. 

F b l r  I. Magnetic phase diagram showing the boundaries of stability of the pa- 
magnetic phase (PARA) for the a p p d a t i o n  described in &ion 2.1 with respxt to 
fmmagnetism (P) and antifermmagnetism (AF). 

We can similarly consider the condition for antiferromagnetism by dividing the 
system into two sublattices, A and B, and applying a staggered magnetic field +h on 
sites in the sublattice A and -h on sites in the sublattice B. We assume that 

nd", = n& = nd/2 i- om/2 & = E:-,, = cd - o(h + s) (2.5) 
The results are shown in figure 1 where we have assumed an alternated structure 
and have again used an elliptical density of states. There is a large antiferromagnetic 
region and the antiferromagnetism only goes away as V / c  --c 0 for n w 0.5. This 
can be compared to calculations using the Hubbard model where the critical value of 
n below which there is no antiferromagnetic state for U --c 03 is given by n w 0.9 

There is a localization transition at n = 1 at a critical value of V / E  IJ 0.15 
shown by the cross on figure 1. This is analogous to the Brinkman-Rice insulator 

P, 101. 
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transition in the Hubbard model. We note that below the transition not only is there 
no propagation but virtual fluctuations onto the p sites are also forbidden. 

2.2 Modifid appraximation 
The problems arising in the previous subsection come about through the failure to 
distinguish between virtual fluctuations that shift the on-site energy, and processes 
that contribute to the kinetic energy. A somewhat analogous situation arises in the 
Hubbard model where for large (I and n < 1 there are two processes involving doubly 
occupied states: virtual processes that cause Heisenberg spin-spin coupling and the 
propagation of holes. If we use the Gutmiller approximation only the second term 
is included. A better way of proceeding in this case is to use a transformation that 
produces an effective Hamiltonian in which the two physical processes are separated 
[16]. This effective Hamiltonian is known as the t-J model. In the present case such 
a transformation cannot be realised. This is because the on-site energy shift is of the 
same order of magnitude as the kinetic energy term. We can, however, imagine in 
some qualitative sense that we can absorb the effect of intrasite terms into a shift 
in the on-site energy and then calculate the quasiparticle bands taking into a m u n t  
intersite terms only. We propose the following approximate form for the quasiparticle 
bands: 

E*,, = 0.5 [ E,, + ep f (ep - 8,,,)2 - 16V2xq,, (26) 

where E,,, is the renormalized value of E,.,,,. For Vie -+ 0 we have Ed,,- edU - 
4V2/e and (2.6) reduces to the expression expected. We assume that any shift in E,,, 

is small and take Ede = edU. We can now recalculate the paramagnetic-ferromagnetic 
phase boundaly. This is shown in figure 2. The ferromagnetic region is seen to be 
much smaller. 

6=n-T 

Pigore 2. Magnetic phase diagram for the appmxinlalion desaibed in sectlon 2 1  The 
broken line show the antifemmagnetic boundary when the superachange tenos are 
included explicitly. 

Consideriag now the antiferromagnetism, we again modify our theory to give the 
correct behaviour in the limit V/e -t 0. We obtain an expression for the free energy 
of the form (2.3) but where the quasiparticle bands, w, are given by solutions of 
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W e  can again minimize with repect to our four MF variables to obtain self-consistent 
equations. p represents the renormalization of the kinetic energy terms and is given 
bY 

p=(q,q,)"2=(1-nd)/[(l-nd/2)2-m2/4]'~a (2.8) 
This reflects the fact that a hole moving from one sublattice to another then back 
to the original experiences one 'difficult' hop, where the strong correlation forbids 
double occupancy, and one 'easy' hop, where the only reshiction is from the Pauli 
principle. 8 gives the spindewity-wave gap. We note that a similar interpretation is 
not consistent with the original approximation of seaion 2.1. We can now calculate 
the antiferromagnetioparamagnetic phase boundary shown in figure 2 We have not 
calculated the fenomagnetioantifermmagnetic boundary. According to Lavagna [lo] 
this is asymptotic to the h e  n = 1 in the limit U -00. 

The calculation does not so far include the superexchange terms that arise in the 
expansion of the pd model to order V 4 / 2 .  We see this by considering n = 1 
and V / E  smalL Here nd is very close to one and the only movement allowed 
is the lowering of the zero-point energy by fluctuations onto the p sites. These 
fluctuations are the same, independently of the spins of nearest-neighbour sites. 'lb 
O(V4/e3), however, we expect two neighbouring sites that are antifemagnetically 
aligned to lower their zero-point energy by a process in which both holes hop onto 
the intervening p site and then 'exchange' their positions [7l. This cannot happen for 
ferromagnetically aligned holes. This process is not included in the SB approximation 
where all tenns involving a hop from one site to another have a band-narrowing 
factor q. In analogy with the Hubbard model, we can write down a two-band 1-J 
model that explicitly includes the superexchange terms: 

and use t h s  as our starting point. The expansion is only valid for V / E  < 1. J is 
given approximately as J - (2V4/z3) .  Alternatively we can consider the fluctuations 
in the boson fields. For the Coleman SBS, magnetic fluctuations arise to second order 
in the boson propagators. A ladder summation can be performed to give [17] 

x A F =  xo AF /(I - J X o A F )  (2.10) 

where xtF is the antiferromagnetic susceptibility in the absence of interactions. J 
here describes both superexchange and RKKY interactions the former being dominant 
close to n = 1. This is equivalent to decoupling the spin term in (2.9) in k-space. 
We take J - ( 2 V 4 / ~ 3 ) n i ,  with the factor of nj reflecting the fact that neighbouring 
sites must be occupied for the interaction to occur, and use (210) to calculate the 
antiferromagnetic boundary. The results are shown by the broken line in figure 2. 
We see that superexchange and the GA produce AFM in somewhat different regions 
of the phase diagram. Superexchange terms would also occur in the expansion of the 
KR SBs around their MF limit. 

A different decouplmg has been considered by Grilli et a1 [6] where the spin 
interaction term is written 

(2.11) 
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This introduces an effective d-d hopping term where the magnitude of the hopping 
has to be determined self-consistently. This decouplig does not by itself give anti- 
femmagnetic long-range order, although if it were included along with the GA the 
phase diagram of figure 2 would be modified. 

We note finally that for n = 1, nd becomes = 1 at a critical value of V / e  shown 
in figure 2 by a cross. The Critical value of V / &  is x 0.27 and is close to that found 
in section 2.1. 

3. Extension of results to R > 1 

The region where n > 1 has been more widely studied, as this is the more common 
case physically. The original approximation set out in section 21 is easily generalized 
and gives the results shown in figure 1. Here the SB MF solution is non-perturbative 
in V ,  as in the heavy-fermion case, and taking the l i t  V / E  + 0 does not recover 
the original local p and d levels. This means that we cannot directly compare with a 
perturbation expansion of the Hamiltonian in V / e  such as that performed by Zhang 
and Rice [SI. The non-perturbative solution derived by the SB method may lead us to 
question the validity of such an expansion. There appears, however, to be an intrinsic 
problem with the SB picture. In the MF approximation, holes can only propagate via 
unoccupied d sites. Fbr n > 1, however, we in fact expect the dominant kinetic 
energy terms to be of the form Vpfon:upj,u and Vp~,df_,djupj , - ,  in which np 
remains equal to one and the p holes move by ‘pushing’ the d holes along, with 
or without a spin flip. There does not seem to be an obvious way of taking these 
processes into a m u n t  within the SB theory for the present form of the Hamiltonian. 

We would like to construct a solution to the p-d model that does in fact reduce to 
the Hubbard model in the perturbation limit. It is, however, no longer straightforward 
to write down quasiparticle bands that explicitly have the correct limiting behaviour 
as we did in section 2.2. We note also that the Zhang-Rice transformation, while 
being based on a perturbation in V / E ,  also relies on the condition that SV/E > 1, 
and so in fact breaks down as V/c -+ 0 and is not rigorously correct in any limit. 
The transformation can, however, be thought to be valid for values of V / E  that are 
small but not too small. It turns out to be more convenient to consider a modified 
form of the Hamiltonian described in the next section. 

4. The Gutmiller approximation for a modified Hamiltonian 

4.1. n < 1 
In order to investigate these difficulties more fully, we now consider a somewhat 
different Hamiltonian where we have two hybridization terms: on-site terms with 
matrix element 2V0 and intersite terms with matrix element -VI: 
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If we take our original p-d model (21) and expand the p states in Wannier functions 
[SI we do indeed get a Hamiltonian of this form, with V, and V, both approximately 
equal to V. p i ,  is approximately the symmetric linear combination of p holes around 
a d site; p i ,  m 0.5&ij1(-1)Mijpj, and the intersite term represents the fact that 
neighbouring d sites share a common p site. In what foUows we shall, however, 
consider Vo and V, as independent variables. As we shall see in section 4.2 this 
has the advantage that for n > 1 we can keep Vo finite and the limit V, - 0 then 

Using the GA directly involves similar problems to those described in section 2.1. 
No distinction is made between kinetic energy and fluctuation terms and, for example, 
if we expand in both V, and V,, terms O(V,a) which simply shift the on-site enery 
are renormalid by the same factor as terms O(V,V,) which take us from one site 
to another. 

We consider instead an alternative approach by performing an expansion in V, 
on the original Hamiltonian [14]. We start by considering the eigen-states and eigen- 
energies of the atomic Hamiltonian with Vl = 0. The lowest-energy single-hole state 
with spin U can be written 

' produck an exact mapping of this model onto the Hubbard model. 

l i ~ , )  = ui0lio) = (sin epf, - COS ed!,)lio) (4.2) 

with corresponding energy EA = -0.5 [E + d-1. Ie'O) is the state with no 
hole on site i and sin'8 = 0.5[1- e/,/-]. 

For 0 4 n 4 1 the unperturbed ground state consists of a proportion n of sites 
occupied by one hole in the state IiA,), the other sites being unoccupied. We can 
define a subspace Q generated by the set of all possible configurations. 

To first order in V, the perturbation moves a state A, onto a neighbouring empty 
site with matrix element t = ( iO, jA,~H[iA, , , jO) = 2V1sin0cos0 where e' and j 
are nearest-neighbour sites. The first-order effective Hamiltonian will then contain 
a hopping term, but it must also forbid double occupancy in order to stay in the 
subspace CL. This is realized by including an infinite on-site repulsion: 

~~~~ ~ ~~~~ ~~ ~ ~ ~ ~ 

'.H = t a!,aj, + ~Cn~,nr~ (4.3) 
{iJb i 

with (I = CO. 

the GA we find a quasiparticle band with dispersion relation 
We see that we have explicitly derived a Hubbard model in this limit. Using now 

E,(r) = -0.5 [e + d a ]  + 4 V , V 0 q , z / d ~ .  (4.4) 

We now attempt to generalize the approach leading to (4.3) and allow for the fact 
that the perturbation V, also produces transitions between the lowest-energy states 
(4.2) and higher-lying states. 

The lowest-energy two-hole state is a singlet given by 

lis,) = [sin $P!,P!, + 2-l" ~ o s $ ( d j p ~ ~  - d i , p f , ) ] l i ~ )  (4.5) 

where sin2$ = 0.5[1- e/,/-]. This has energy 

E, = -0.5 [E + 4-1 (4.6) 
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The lowest excitation energy is E,,, = E, - 2EA. 
We note that the second excited state is a two-particle triplet with energy --E. 

There are also other higher-lying one-, two- and threeparticle states. 'Ib a first 
approximation we neglect aU of these and consider the subspace, A, in which a site 
can be in one of four states: it can be empty, can be occupied by a quasiparticle 
(with spin up or down) or can be occupied by the singlet S,. This is reminiscent of 
some effective Hubbard model with finite on-site energy E,,,. 

To the first order in V, we have to consider the following matrix elements: 

( ~ S l , j O ~ H ~ i S l , j O ) - ( i A , , ~ A ~ , , ~ H ~ i A , , j A ~ , )  = Es-2EA (4.7) 

(iA,,jO~H~iO,jA,) = 2VlsinOcosO (4.9 

(is,, jOlHliA-,  , j A,) = -(aK /f i)(cos 4 + ficos O sin O sin 4)  (4.9) 

( ~ S l , j A ~ , ~ H ~ i A ~ , , j S l )  = -Vl(sin Ocos O cos' 4 + &sina Ocos +sin 4) .  (4.10) 

We note that for a simple Hubbard model equations (4.8)-(4.10) would all have the 
same value. 

'Ib write the effective Hamiltonian that reproduces the matrix elements (4.7)- 
(4.10) we need to consider the isomorphism from the subspace A to a modified 
subspace A' defined by the replacement of the doubjy occupied state is, by the 
state lis') = afTatliO). Following Bastide and Lacmix [14] we can now define the 
appropriate effective Hamiltonian. We choose to represent this Hamiltonian using 
auxiliary boson fields and introduce boson operators e,, ciu and si representing 
empty, singly occupied and singlet states respectively. In the restricted subspace we 
can write a Hamiltonian 

Ha = - (4.11) 

with the constraints 

V,(z$z$a!,a,, + HC) + x(Es - 2EA)s!s; 
{ij), 

(4.12) 

(4.13) 

and where 

z;,, = (1 - e+ I, c. w - s ! s . ) - l ~ z ( c o s e  , i ct %U e. * + 2 - " / 2 s i n ~ c o s ~  ~ f c ; - ~ )  

x (1 - eiei t - c;-,ci-, t ) - , / a  (4.14) 

z? I ,  =(I-C? JU c. JU - ~ ! s . ) - ' / ~ [ s i n e  J J c ~ , e j + ( 2 - 1 ~ z c o ~ e c o ~ ~  
+sin0sin4)s,!c~-,](l - .,!ej -C;-~C~-,,)- 112. (4.15) 

We note that this differs from the representation of the pure Hubbard model with 
finite U in that the factors z contain factors of cos 8, sin 8, cos 4 and sin 4. These 
differences arise as follows. The original Hamiltonian has a term 

- VI (&p; ,  + HC). 
{ i j l m  
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We can represent the creation of a d hole in our new set of states either by the 
creation of a quasiparticle and destruction of an empty site or by the creation of a 
singlet and the desmction of an oppositespin quasiparticle. Since the d and p weights 
in a quasiparticle are cos 0 and sin B respectively, and the weight of the relevant part 
of the singlet is cos we need to include a factor cos B with the first process and 
a factor sin 6cos with the second. We can consider the destruction of a p hole 
in a similar way. We can check that our effective Hamiltonian is correct by calculating 
the following matrix element% (iS’,jO~H&S’, j 0 )  - ( iA,  , jA-o  lHe&A., , j A - < ) ,  
( iA,,  j O l  He,&, j A J ,  (iS’,jOIHeffliA-,,, jA,) and ( iS ‘ , jA- ,  IHeflliA-,, js’). 
It is easily verified that these have the same values as (4.7)-(4.10) respectively. 

We can now go ahead and calculate the phase diagram in the MF Limit in the 
standard way. While (4.1) is most closely related to the original p-d model for 
2V0 = -VI = V, inconsistencies arise if V is then taken to be very small. Firstly, 
as V -+ 0, the singlet-triplet energy gap goes to zero and we would therefore need 
also to include triplet states as well as other higher-lying states and secondly we have 
kept terms O( V,V,) whilst neglecting terms O( Y2). We therefore keep V, finite 
and let only V, vary. The phase diagram is shown in figure 3. We see that the 
ferromagnetic region is suppressed whilst the antiferromagnetic region is larger with 
respect to figure 2. This is probably related to the fact that in our subspace, A‘, 
ferromagnetically aligned holes cannot propagate via doubly occupied states whilst 
antiferromagnetically aligned holes can. We may expect a larger ferromagnetic region 
if the triplet states are included. 

6.”-1 

Figum 3. Magnetic phase diagram for Lhc model dcscribcd in section 4 with VO / c  = 1. 
Tl~c bmlien line s h m  thc antiferromagnclic boundary when supcrexchangc is included. 

An antiferromagnetic superexchange term can be calculated by including terms 
O(V:) 114). In the general case we need to consider transitions to all excited states 
which gives a veIy complicated expression. Here we pick out the term that reduces 
to J = 2 V 4 / ~ 3  in the limit 2 4  = -V, = V - 0. Thisis gives 

J = f i c o s e s i n  ecos 4s in  41.;2/(Es - 213,). (4.16) 

We can decouple as before and the antifemmagnetic region is shown by the broken 
l i e  in figure 3. 

There is a localization transition at n = 1. The critical value of Vl/c at ra = 1 
for Vole = 1 is given hy V,/e = 0.24 which is comparable to the value found in 
section 22. 
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4.2 n > l  

We can now generalize this to n > 1. Starting from (4.1) we see that for n > 1 
and V, = 0 the ground state consists of a mixture of singly occupied sites in the 
state A, and doubly occupied sites in the singlet state SI. Switching on V, allows 
the singlets to move around and we obtain an effective Hubbard model. This is just 
the Zhang-Rice picture. VI also produces excitations to higher-energy states and we 
can consider excitations out of the singlet-spin subspace. For VO/& +. 0 the lowest 
excitation energy is given by the singlet-triplet energy difference, ET - E, = SK2/e2. 
We see that for Vo = VI = V, the singlet and triplet states become degenerate in 
the perturbation limit. This is the problem with the Zhang-Rice theory refered 
to earlier. For values of ( V J E ) ~  > 0.4, however, the lowest-energy excitation is 
given by a process in which two singly occupied nearest-neighbour sites are replaced 
by a singlet and an empty site. Including the triplet states, T,  would be relatively 
complicated and we consider instead the situation where we have some unoccupied 
states mixed in. The four possible states are then just those available for n < 1. We 
note that this is further justified by considering the matrix elements for the two types 
of excitation. We have 

(iSl, jA,,~He&A-,,  j T )  = (V,/\/z) sin 0cos 0 cos 4. . (4.17) 

We see from (4.9) that the matrix element for excitations involving unoccupied states 
is much larger than (4.17) if V,/E is small and is a factor - 3 larger for V,/E = 1. 

The results are shown in figure 3 for V0/& = 1. While the results on the line 
VI = 0 are symmetric for n < 1 and n > 1 a slight asymmetry is present V, > 0. In 
both regions the phase diagram is very similar to that found for the Hubbard model. 

5. Conclusion 

We have shown that care is needed in applying the GA to the p-d model. This also 
has consequences for other SB techniques. We note that the GA was originally devised 
for the Hubbard model while the Coleman SB approach was developed to treat the 
periodic Anderson model in the heayfermion regime. It does not necessarily follow 
that methods that have had some success in a certain regime will correctly describe 
a regime with very different parameters. We have illustrated the problems with two 
slightly different models, the first the usual p-d model and the second a modified 
p-d model containing both on-site and inter-site hybridization terms. The original 
approximation fails for n < 1 through failing to distinguish between fluctuation and 
kinetic energy terms and for n > 1 by excluding processes in which nd remains = 1. 
We have indicated a possible way forward using the second of these Hamiltonians 
where we can treat on-site terms correctly and then expand in the kinetic energy 
terms. At the simplest level of approximation this modified p-d model maps onto 
the Hubbard model for both n < 1 and n > 1. The extra degree of freedom of 
the p-d model compared with the Hubbard model can be approximately included by 
considering excitations out of the lowest-energy subspace. We have included only the 
lowest-energy excitation but it may be possible to extend our treatment to include 
more states making the model more realistic. One effect of including, for example, 
the higher-lying triplet states will be to increase the ferromagnetic region. 
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While we may hope that the GA gives us approximately the correct result for the 
ferromagnetism, we need a better approximation to describe the antiferromagnetism 
It is necessary to include the superexchange terms explicitly. We have only included 
these terms in a very simple way here and a fuller investigation is needed. 

We note finally that to provide a realistic description we need to include atso direct 
p p  hopping and a p-d Coulomb repulsion term. The Gutcwiller approximation 
also neglects the nearest-neighbour p-d antiferromagnetic exchange which will be 
particularly important for n > 1. In principle all these terms could be included. 
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